Metamath Proof Explorer


Theorem volss

Description: The Lebesgue measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 17-Oct-2017)

Ref Expression
Assertion volss A dom vol B dom vol A B vol A vol B

Proof

Step Hyp Ref Expression
1 simp3 A dom vol B dom vol A B A B
2 mblss B dom vol B
3 2 3ad2ant2 A dom vol B dom vol A B B
4 ovolss A B B vol * A vol * B
5 1 3 4 syl2anc A dom vol B dom vol A B vol * A vol * B
6 mblvol A dom vol vol A = vol * A
7 6 3ad2ant1 A dom vol B dom vol A B vol A = vol * A
8 mblvol B dom vol vol B = vol * B
9 8 3ad2ant2 A dom vol B dom vol A B vol B = vol * B
10 5 7 9 3brtr4d A dom vol B dom vol A B vol A vol B