Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
|
2 |
|
mblss |
|
3 |
1 2
|
syl |
|
4 |
|
simpl2 |
|
5 |
|
mblss |
|
6 |
4 5
|
syl |
|
7 |
3 6
|
unssd |
|
8 |
|
readdcl |
|
9 |
8
|
adantl |
|
10 |
|
simprl |
|
11 |
|
simprr |
|
12 |
|
ovolun |
|
13 |
3 10 6 11 12
|
syl22anc |
|
14 |
|
ovollecl |
|
15 |
7 9 13 14
|
syl3anc |
|
16 |
|
mblsplit |
|
17 |
1 7 15 16
|
syl3anc |
|
18 |
|
simpl3 |
|
19 |
|
indir |
|
20 |
|
inidm |
|
21 |
|
incom |
|
22 |
20 21
|
uneq12i |
|
23 |
|
unabs |
|
24 |
22 23
|
eqtri |
|
25 |
19 24
|
eqtri |
|
26 |
25
|
a1i |
|
27 |
26
|
fveq2d |
|
28 |
|
uncom |
|
29 |
28
|
difeq1i |
|
30 |
|
difun2 |
|
31 |
29 30
|
eqtri |
|
32 |
21
|
eqeq1i |
|
33 |
|
disj3 |
|
34 |
32 33
|
sylbb1 |
|
35 |
31 34
|
eqtr4id |
|
36 |
35
|
fveq2d |
|
37 |
27 36
|
oveq12d |
|
38 |
18 37
|
syl |
|
39 |
17 38
|
eqtrd |
|
40 |
39
|
ex |
|
41 |
|
mblvol |
|
42 |
41
|
eleq1d |
|
43 |
|
mblvol |
|
44 |
43
|
eleq1d |
|
45 |
42 44
|
bi2anan9 |
|
46 |
45
|
3adant3 |
|
47 |
|
unmbl |
|
48 |
|
mblvol |
|
49 |
47 48
|
syl |
|
50 |
41 43
|
oveqan12d |
|
51 |
49 50
|
eqeq12d |
|
52 |
51
|
3adant3 |
|
53 |
40 46 52
|
3imtr4d |
|
54 |
53
|
imp |
|