| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|
| 2 |
|
mblss |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
simpl2 |
|
| 5 |
|
mblss |
|
| 6 |
4 5
|
syl |
|
| 7 |
3 6
|
unssd |
|
| 8 |
|
readdcl |
|
| 9 |
8
|
adantl |
|
| 10 |
|
simprl |
|
| 11 |
|
simprr |
|
| 12 |
|
ovolun |
|
| 13 |
3 10 6 11 12
|
syl22anc |
|
| 14 |
|
ovollecl |
|
| 15 |
7 9 13 14
|
syl3anc |
|
| 16 |
|
mblsplit |
|
| 17 |
1 7 15 16
|
syl3anc |
|
| 18 |
|
simpl3 |
|
| 19 |
|
indir |
|
| 20 |
|
inidm |
|
| 21 |
|
incom |
|
| 22 |
20 21
|
uneq12i |
|
| 23 |
|
unabs |
|
| 24 |
22 23
|
eqtri |
|
| 25 |
19 24
|
eqtri |
|
| 26 |
25
|
a1i |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
uncom |
|
| 29 |
28
|
difeq1i |
|
| 30 |
|
difun2 |
|
| 31 |
29 30
|
eqtri |
|
| 32 |
21
|
eqeq1i |
|
| 33 |
|
disj3 |
|
| 34 |
32 33
|
sylbb1 |
|
| 35 |
31 34
|
eqtr4id |
|
| 36 |
35
|
fveq2d |
|
| 37 |
27 36
|
oveq12d |
|
| 38 |
18 37
|
syl |
|
| 39 |
17 38
|
eqtrd |
|
| 40 |
39
|
ex |
|
| 41 |
|
mblvol |
|
| 42 |
41
|
eleq1d |
|
| 43 |
|
mblvol |
|
| 44 |
43
|
eleq1d |
|
| 45 |
42 44
|
bi2anan9 |
|
| 46 |
45
|
3adant3 |
|
| 47 |
|
unmbl |
|
| 48 |
|
mblvol |
|
| 49 |
47 48
|
syl |
|
| 50 |
41 43
|
oveqan12d |
|
| 51 |
49 50
|
eqeq12d |
|
| 52 |
51
|
3adant3 |
|
| 53 |
40 46 52
|
3imtr4d |
|
| 54 |
53
|
imp |
|