Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of TakeutiZaring p. 17. (Contributed by NM, 30-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Revised to prove pwexg from vpwex . (Revised by BJ, 10-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vpwex |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw | ||
| 2 | axpow2 | ||
| 3 | 2 | sepexi | |
| 4 | sseq1 | ||
| 5 | 4 | eqabbw | |
| 6 | 5 | exbii | |
| 7 | 3 6 | mpbir | |
| 8 | 7 | issetri | |
| 9 | 1 8 | eqeltri |