Metamath Proof Explorer


Theorem vpwex

Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of TakeutiZaring p. 17. (Contributed by NM, 30-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Revised to prove pwexg from vpwex . (Revised by BJ, 10-Aug-2022)

Ref Expression
Assertion vpwex 𝒫 x V

Proof

Step Hyp Ref Expression
1 df-pw 𝒫 x = w | w x
2 axpow2 y z z x z y
3 2 bm1.3ii y z z y z x
4 sseq1 w = z w x z x
5 4 abeq2w y = w | w x z z y z x
6 5 exbii y y = w | w x y z z y z x
7 3 6 mpbir y y = w | w x
8 7 issetri w | w x V
9 1 8 eqeltri 𝒫 x V