Metamath Proof Explorer


Theorem vr1cl

Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypotheses vr1cl.x X = var 1 R
vr1cl.p P = Poly 1 R
vr1cl.b B = Base P
Assertion vr1cl R Ring X B

Proof

Step Hyp Ref Expression
1 vr1cl.x X = var 1 R
2 vr1cl.p P = Poly 1 R
3 vr1cl.b B = Base P
4 1 vr1val X = 1 𝑜 mVar R
5 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
6 eqid 1 𝑜 mVar R = 1 𝑜 mVar R
7 eqid PwSer 1 R = PwSer 1 R
8 2 7 3 ply1bas B = Base 1 𝑜 mPoly R
9 1onn 1 𝑜 ω
10 9 a1i R Ring 1 𝑜 ω
11 id R Ring R Ring
12 0lt1o 1 𝑜
13 12 a1i R Ring 1 𝑜
14 5 6 8 10 11 13 mvrcl R Ring 1 𝑜 mVar R B
15 4 14 eqeltrid R Ring X B