Metamath Proof Explorer


Theorem vrgpfval

Description: The canonical injection from the generating set I to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r ˙ = ~ FG I
vrgpfval.u U = var FGrp I
Assertion vrgpfval I V U = j I ⟨“ j ”⟩ ˙

Proof

Step Hyp Ref Expression
1 vrgpfval.r ˙ = ~ FG I
2 vrgpfval.u U = var FGrp I
3 elex I V I V
4 id i = I i = I
5 fveq2 i = I ~ FG i = ~ FG I
6 5 1 eqtr4di i = I ~ FG i = ˙
7 6 eceq2d i = I ⟨“ j ”⟩ ~ FG i = ⟨“ j ”⟩ ˙
8 4 7 mpteq12dv i = I j i ⟨“ j ”⟩ ~ FG i = j I ⟨“ j ”⟩ ˙
9 df-vrgp var FGrp = i V j i ⟨“ j ”⟩ ~ FG i
10 vex i V
11 10 mptex j i ⟨“ j ”⟩ ~ FG i V
12 8 9 11 fvmpt3i I V var FGrp I = j I ⟨“ j ”⟩ ˙
13 3 12 syl I V var FGrp I = j I ⟨“ j ”⟩ ˙
14 2 13 eqtrid I V U = j I ⟨“ j ”⟩ ˙