Metamath Proof Explorer


Theorem vrgpval

Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r ˙ = ~ FG I
vrgpfval.u U = var FGrp I
Assertion vrgpval I V A I U A = ⟨“ A ”⟩ ˙

Proof

Step Hyp Ref Expression
1 vrgpfval.r ˙ = ~ FG I
2 vrgpfval.u U = var FGrp I
3 1 2 vrgpfval I V U = j I ⟨“ j ”⟩ ˙
4 3 fveq1d I V U A = j I ⟨“ j ”⟩ ˙ A
5 opeq1 j = A j = A
6 5 s1eqd j = A ⟨“ j ”⟩ = ⟨“ A ”⟩
7 6 eceq1d j = A ⟨“ j ”⟩ ˙ = ⟨“ A ”⟩ ˙
8 eqid j I ⟨“ j ”⟩ ˙ = j I ⟨“ j ”⟩ ˙
9 1 fvexi ˙ V
10 ecexg ˙ V ⟨“ A ”⟩ ˙ V
11 9 10 ax-mp ⟨“ A ”⟩ ˙ V
12 7 8 11 fvmpt A I j I ⟨“ j ”⟩ ˙ A = ⟨“ A ”⟩ ˙
13 4 12 sylan9eq I V A I U A = ⟨“ A ”⟩ ˙