Metamath Proof Explorer


Theorem vrmdval

Description: The value of the generating elements of a free monoid. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis vrmdfval.u U = var FMnd I
Assertion vrmdval I V A I U A = ⟨“ A ”⟩

Proof

Step Hyp Ref Expression
1 vrmdfval.u U = var FMnd I
2 1 vrmdfval I V U = j I ⟨“ j ”⟩
3 2 adantr I V A I U = j I ⟨“ j ”⟩
4 s1eq j = A ⟨“ j ”⟩ = ⟨“ A ”⟩
5 4 adantl I V A I j = A ⟨“ j ”⟩ = ⟨“ A ”⟩
6 simpr I V A I A I
7 s1cl A I ⟨“ A ”⟩ Word I
8 7 adantl I V A I ⟨“ A ”⟩ Word I
9 3 5 6 8 fvmptd I V A I U A = ⟨“ A ”⟩