Metamath Proof Explorer


Theorem vscacn

Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses istlm.s · ˙ = 𝑠𝑓 W
istlm.j J = TopOpen W
istlm.f F = Scalar W
istlm.k K = TopOpen F
Assertion vscacn W TopMod · ˙ K × t J Cn J

Proof

Step Hyp Ref Expression
1 istlm.s · ˙ = 𝑠𝑓 W
2 istlm.j J = TopOpen W
3 istlm.f F = Scalar W
4 istlm.k K = TopOpen F
5 1 2 3 4 istlm W TopMod W TopMnd W LMod F TopRing · ˙ K × t J Cn J
6 5 simprbi W TopMod · ˙ K × t J Cn J