Metamath Proof Explorer


Theorem vtocl

Description: Implicit substitution of a class for a setvar variable. See also vtoclALT . (Contributed by NM, 30-Aug-1993) Remove dependency on ax-10 . (Revised by BJ, 29-Nov-2020) (Proof shortened by SN, 20-Apr-2024)

Ref Expression
Hypotheses vtocl.1 A V
vtocl.2 x = A φ ψ
vtocl.3 φ
Assertion vtocl ψ

Proof

Step Hyp Ref Expression
1 vtocl.1 A V
2 vtocl.2 x = A φ ψ
3 vtocl.3 φ
4 3 2 mpbii x = A ψ
5 1 isseti x x = A
6 4 5 exlimiiv ψ