Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocl2d
Metamath Proof Explorer
Description: Implicit substitution of two classes for two setvar variables.
(Contributed by Thierry Arnoux , 25-Aug-2020) (Revised by BTernaryTau , 19-Oct-2023)
Ref
Expression
Hypotheses
vtocl2d.a
⊢ φ → A ∈ V
vtocl2d.b
⊢ φ → B ∈ W
vtocl2d.1
⊢ x = A ∧ y = B → ψ ↔ χ
vtocl2d.3
⊢ φ → ψ
Assertion
vtocl2d
⊢ φ → χ
Proof
Step
Hyp
Ref
Expression
1
vtocl2d.a
⊢ φ → A ∈ V
2
vtocl2d.b
⊢ φ → B ∈ W
3
vtocl2d.1
⊢ x = A ∧ y = B → ψ ↔ χ
4
vtocl2d.3
⊢ φ → ψ
5
4
adantr
⊢ φ ∧ y = B → ψ
6
3
adantll
⊢ φ ∧ x = A ∧ y = B → ψ ↔ χ
7
6
pm5.74da
⊢ φ ∧ x = A → y = B → ψ ↔ y = B → χ
8
4
a1d
⊢ φ → y = B → ψ
9
1 7 8
vtocld
⊢ φ → y = B → χ
10
9
imp
⊢ φ ∧ y = B → χ
11
5 10
2thd
⊢ φ ∧ y = B → ψ ↔ χ
12
2 11 4
vtocld
⊢ φ → χ