Metamath Proof Explorer


Theorem vtocl2d

Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020) (Revised by BTernaryTau, 19-Oct-2023)

Ref Expression
Hypotheses vtocl2d.a φ A V
vtocl2d.b φ B W
vtocl2d.1 x = A y = B ψ χ
vtocl2d.3 φ ψ
Assertion vtocl2d φ χ

Proof

Step Hyp Ref Expression
1 vtocl2d.a φ A V
2 vtocl2d.b φ B W
3 vtocl2d.1 x = A y = B ψ χ
4 vtocl2d.3 φ ψ
5 4 adantr φ y = B ψ
6 3 adantll φ x = A y = B ψ χ
7 6 pm5.74da φ x = A y = B ψ y = B χ
8 4 a1d φ y = B ψ
9 1 7 8 vtocld φ y = B χ
10 9 imp φ y = B χ
11 5 10 2thd φ y = B ψ χ
12 2 11 4 vtocld φ χ