Metamath Proof Explorer


Theorem vtocl2ga

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 23-Aug-2023)

Ref Expression
Hypotheses vtocl2ga.1 x = A φ ψ
vtocl2ga.2 y = B ψ χ
vtocl2ga.3 x C y D φ
Assertion vtocl2ga A C B D χ

Proof

Step Hyp Ref Expression
1 vtocl2ga.1 x = A φ ψ
2 vtocl2ga.2 y = B ψ χ
3 vtocl2ga.3 x C y D φ
4 2 imbi2d y = B A C ψ A C χ
5 1 imbi2d x = A y D φ y D ψ
6 3 ex x C y D φ
7 5 6 vtoclga A C y D ψ
8 7 com12 y D A C ψ
9 4 8 vtoclga B D A C χ
10 9 impcom A C B D χ