Metamath Proof Explorer


Theorem vtocl2gaf

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013)

Ref Expression
Hypotheses vtocl2gaf.a _ x A
vtocl2gaf.b _ y A
vtocl2gaf.c _ y B
vtocl2gaf.1 x ψ
vtocl2gaf.2 y χ
vtocl2gaf.3 x = A φ ψ
vtocl2gaf.4 y = B ψ χ
vtocl2gaf.5 x C y D φ
Assertion vtocl2gaf A C B D χ

Proof

Step Hyp Ref Expression
1 vtocl2gaf.a _ x A
2 vtocl2gaf.b _ y A
3 vtocl2gaf.c _ y B
4 vtocl2gaf.1 x ψ
5 vtocl2gaf.2 y χ
6 vtocl2gaf.3 x = A φ ψ
7 vtocl2gaf.4 y = B ψ χ
8 vtocl2gaf.5 x C y D φ
9 1 nfel1 x A C
10 nfv x y D
11 9 10 nfan x A C y D
12 11 4 nfim x A C y D ψ
13 2 nfel1 y A C
14 3 nfel1 y B D
15 13 14 nfan y A C B D
16 15 5 nfim y A C B D χ
17 eleq1 x = A x C A C
18 17 anbi1d x = A x C y D A C y D
19 18 6 imbi12d x = A x C y D φ A C y D ψ
20 eleq1 y = B y D B D
21 20 anbi2d y = B A C y D A C B D
22 21 7 imbi12d y = B A C y D ψ A C B D χ
23 1 2 3 12 16 19 22 8 vtocl2gf A C B D A C B D χ
24 23 pm2.43i A C B D χ