Metamath Proof Explorer


Theorem vtocl2gf

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995)

Ref Expression
Hypotheses vtocl2gf.1 _ x A
vtocl2gf.2 _ y A
vtocl2gf.3 _ y B
vtocl2gf.4 x ψ
vtocl2gf.5 y χ
vtocl2gf.6 x = A φ ψ
vtocl2gf.7 y = B ψ χ
vtocl2gf.8 φ
Assertion vtocl2gf A V B W χ

Proof

Step Hyp Ref Expression
1 vtocl2gf.1 _ x A
2 vtocl2gf.2 _ y A
3 vtocl2gf.3 _ y B
4 vtocl2gf.4 x ψ
5 vtocl2gf.5 y χ
6 vtocl2gf.6 x = A φ ψ
7 vtocl2gf.7 y = B ψ χ
8 vtocl2gf.8 φ
9 elex A V A V
10 2 nfel1 y A V
11 10 5 nfim y A V χ
12 7 imbi2d y = B A V ψ A V χ
13 1 4 6 8 vtoclgf A V ψ
14 3 11 12 13 vtoclgf B W A V χ
15 9 14 mpan9 A V B W χ