Metamath Proof Explorer


Theorem vtocl3

Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995) (Proof shortened by Andrew Salmon, 8-Jun-2011) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 23-Aug-2023)

Ref Expression
Hypotheses vtocl3.1 A V
vtocl3.2 B V
vtocl3.3 C V
vtocl3.4 x = A y = B z = C φ ψ
vtocl3.5 φ
Assertion vtocl3 ψ

Proof

Step Hyp Ref Expression
1 vtocl3.1 A V
2 vtocl3.2 B V
3 vtocl3.3 C V
4 vtocl3.4 x = A y = B z = C φ ψ
5 vtocl3.5 φ
6 5 a1i z = C φ
7 4 3expa x = A y = B z = C φ ψ
8 7 pm5.74da x = A y = B z = C φ z = C ψ
9 1 2 8 6 vtocl2 z = C ψ
10 6 9 2thd z = C φ ψ
11 3 10 5 vtocl ψ