Metamath Proof Explorer


Theorem vtocl3g

Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypotheses vtocl3g.1 x = A φ ψ
vtocl3g.2 y = B ψ χ
vtocl3g.3 z = C χ θ
vtocl3g.4 φ
Assertion vtocl3g A V B W C X θ

Proof

Step Hyp Ref Expression
1 vtocl3g.1 x = A φ ψ
2 vtocl3g.2 y = B ψ χ
3 vtocl3g.3 z = C χ θ
4 vtocl3g.4 φ
5 elex A V A V
6 2 imbi2d y = B A V ψ A V χ
7 3 imbi2d z = C A V χ A V θ
8 1 4 vtoclg A V ψ
9 6 7 8 vtocl2g B W C X A V θ
10 5 9 mpan9 A V B W C X θ
11 10 3impb A V B W C X θ