Metamath Proof Explorer


Theorem vtocl3g

Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypotheses vtocl3g.1 x=Aφψ
vtocl3g.2 y=Bψχ
vtocl3g.3 z=Cχθ
vtocl3g.4 φ
Assertion vtocl3g AVBWCXθ

Proof

Step Hyp Ref Expression
1 vtocl3g.1 x=Aφψ
2 vtocl3g.2 y=Bψχ
3 vtocl3g.3 z=Cχθ
4 vtocl3g.4 φ
5 elex AVAV
6 2 imbi2d y=BAVψAVχ
7 3 imbi2d z=CAVχAVθ
8 1 4 vtoclg AVψ
9 6 7 8 vtocl2g BWCXAVθ
10 5 9 mpan9 AVBWCXθ
11 10 3impb AVBWCXθ