Metamath Proof Explorer


Theorem vtocl3ga

Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypotheses vtocl3ga.1 x = A φ ψ
vtocl3ga.2 y = B ψ χ
vtocl3ga.3 z = C χ θ
vtocl3ga.4 x D y R z S φ
Assertion vtocl3ga A D B R C S θ

Proof

Step Hyp Ref Expression
1 vtocl3ga.1 x = A φ ψ
2 vtocl3ga.2 y = B ψ χ
3 vtocl3ga.3 z = C χ θ
4 vtocl3ga.4 x D y R z S φ
5 eleq1 x = A x D A D
6 5 3anbi1d x = A x D y R z S A D y R z S
7 6 1 imbi12d x = A x D y R z S φ A D y R z S ψ
8 eleq1 y = B y R B R
9 8 3anbi2d y = B A D y R z S A D B R z S
10 9 2 imbi12d y = B A D y R z S ψ A D B R z S χ
11 eleq1 z = C z S C S
12 11 3anbi3d z = C A D B R z S A D B R C S
13 12 3 imbi12d z = C A D B R z S χ A D B R C S θ
14 7 10 13 4 vtocl3g A D B R C S A D B R C S θ
15 14 pm2.43i A D B R C S θ