Metamath Proof Explorer


Theorem vtocl3ga

Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by GG, 3-Oct-2024) (Proof shortened by Wolf Lammen, 31-May-2025)

Ref Expression
Hypotheses vtocl3ga.1 x = A φ ψ
vtocl3ga.2 y = B ψ χ
vtocl3ga.3 z = C χ θ
vtocl3ga.4 x D y R z S φ
Assertion vtocl3ga A D B R C S θ

Proof

Step Hyp Ref Expression
1 vtocl3ga.1 x = A φ ψ
2 vtocl3ga.2 y = B ψ χ
3 vtocl3ga.3 z = C χ θ
4 vtocl3ga.4 x D y R z S φ
5 3 imbi2d z = C A D B R χ A D B R θ
6 1 imbi2d x = A z S φ z S ψ
7 2 imbi2d y = B z S ψ z S χ
8 4 3expia x D y R z S φ
9 6 7 8 vtocl2ga A D B R z S χ
10 9 com12 z S A D B R χ
11 5 10 vtoclga C S A D B R θ
12 11 impcom A D B R C S θ
13 12 3impa A D B R C S θ