Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocl3gaOLD
Metamath Proof Explorer
Description: Obsolete version of vtocl3ga as of 3-Oct-2024. (Contributed by NM , 20-Aug-1995) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
vtocl3gaOLD.1
⊢ x = A → φ ↔ ψ
vtocl3gaOLD.2
⊢ y = B → ψ ↔ χ
vtocl3gaOLD.3
⊢ z = C → χ ↔ θ
vtocl3gaOLD.4
⊢ x ∈ D ∧ y ∈ R ∧ z ∈ S → φ
Assertion
vtocl3gaOLD
⊢ A ∈ D ∧ B ∈ R ∧ C ∈ S → θ
Proof
Step
Hyp
Ref
Expression
1
vtocl3gaOLD.1
⊢ x = A → φ ↔ ψ
2
vtocl3gaOLD.2
⊢ y = B → ψ ↔ χ
3
vtocl3gaOLD.3
⊢ z = C → χ ↔ θ
4
vtocl3gaOLD.4
⊢ x ∈ D ∧ y ∈ R ∧ z ∈ S → φ
5
nfcv
⊢ Ⅎ _ x A
6
nfcv
⊢ Ⅎ _ y A
7
nfcv
⊢ Ⅎ _ z A
8
nfcv
⊢ Ⅎ _ y B
9
nfcv
⊢ Ⅎ _ z B
10
nfcv
⊢ Ⅎ _ z C
11
nfv
⊢ Ⅎ x ψ
12
nfv
⊢ Ⅎ y χ
13
nfv
⊢ Ⅎ z θ
14
5 6 7 8 9 10 11 12 13 1 2 3 4
vtocl3gaf
⊢ A ∈ D ∧ B ∈ R ∧ C ∈ S → θ