Metamath Proof Explorer


Theorem vtocl3gaOLDOLD

Description: Obsolete version of vtocl3ga as of 3-Oct-2024. (Contributed by NM, 20-Aug-1995) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vtocl3gaOLDOLD.1 x = A φ ψ
vtocl3gaOLDOLD.2 y = B ψ χ
vtocl3gaOLDOLD.3 z = C χ θ
vtocl3gaOLDOLD.4 x D y R z S φ
Assertion vtocl3gaOLDOLD A D B R C S θ

Proof

Step Hyp Ref Expression
1 vtocl3gaOLDOLD.1 x = A φ ψ
2 vtocl3gaOLDOLD.2 y = B ψ χ
3 vtocl3gaOLDOLD.3 z = C χ θ
4 vtocl3gaOLDOLD.4 x D y R z S φ
5 nfcv _ x A
6 nfcv _ y A
7 nfcv _ z A
8 nfcv _ y B
9 nfcv _ z B
10 nfcv _ z C
11 nfv x ψ
12 nfv y χ
13 nfv z θ
14 5 6 7 8 9 10 11 12 13 1 2 3 4 vtocl3gaf A D B R C S θ