Metamath Proof Explorer


Theorem vtocl3gaf

Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 11-Oct-2016) (Proof shortened by Wolf Lammen, 31-May-2025)

Ref Expression
Hypotheses vtocl3gaf.a _ x A
vtocl3gaf.b _ y A
vtocl3gaf.c _ z A
vtocl3gaf.d _ y B
vtocl3gaf.e _ z B
vtocl3gaf.f _ z C
vtocl3gaf.1 x ψ
vtocl3gaf.2 y χ
vtocl3gaf.3 z θ
vtocl3gaf.4 x = A φ ψ
vtocl3gaf.5 y = B ψ χ
vtocl3gaf.6 z = C χ θ
vtocl3gaf.7 x R y S z T φ
Assertion vtocl3gaf A R B S C T θ

Proof

Step Hyp Ref Expression
1 vtocl3gaf.a _ x A
2 vtocl3gaf.b _ y A
3 vtocl3gaf.c _ z A
4 vtocl3gaf.d _ y B
5 vtocl3gaf.e _ z B
6 vtocl3gaf.f _ z C
7 vtocl3gaf.1 x ψ
8 vtocl3gaf.2 y χ
9 vtocl3gaf.3 z θ
10 vtocl3gaf.4 x = A φ ψ
11 vtocl3gaf.5 y = B ψ χ
12 vtocl3gaf.6 z = C χ θ
13 vtocl3gaf.7 x R y S z T φ
14 3 nfel1 z A R
15 5 nfel1 z B S
16 14 15 nfan z A R B S
17 16 9 nfim z A R B S θ
18 12 imbi2d z = C A R B S χ A R B S θ
19 nfv x z T
20 19 7 nfim x z T ψ
21 nfv y z T
22 21 8 nfim y z T χ
23 10 imbi2d x = A z T φ z T ψ
24 11 imbi2d y = B z T ψ z T χ
25 13 3expia x R y S z T φ
26 1 2 4 20 22 23 24 25 vtocl2gaf A R B S z T χ
27 26 com12 z T A R B S χ
28 6 17 18 27 vtoclgaf C T A R B S θ
29 28 impcom A R B S C T θ
30 29 3impa A R B S C T θ