Metamath Proof Explorer


Theorem vtocl3gaf

Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Hypotheses vtocl3gaf.a _ x A
vtocl3gaf.b _ y A
vtocl3gaf.c _ z A
vtocl3gaf.d _ y B
vtocl3gaf.e _ z B
vtocl3gaf.f _ z C
vtocl3gaf.1 x ψ
vtocl3gaf.2 y χ
vtocl3gaf.3 z θ
vtocl3gaf.4 x = A φ ψ
vtocl3gaf.5 y = B ψ χ
vtocl3gaf.6 z = C χ θ
vtocl3gaf.7 x R y S z T φ
Assertion vtocl3gaf A R B S C T θ

Proof

Step Hyp Ref Expression
1 vtocl3gaf.a _ x A
2 vtocl3gaf.b _ y A
3 vtocl3gaf.c _ z A
4 vtocl3gaf.d _ y B
5 vtocl3gaf.e _ z B
6 vtocl3gaf.f _ z C
7 vtocl3gaf.1 x ψ
8 vtocl3gaf.2 y χ
9 vtocl3gaf.3 z θ
10 vtocl3gaf.4 x = A φ ψ
11 vtocl3gaf.5 y = B ψ χ
12 vtocl3gaf.6 z = C χ θ
13 vtocl3gaf.7 x R y S z T φ
14 1 nfel1 x A R
15 nfv x y S
16 nfv x z T
17 14 15 16 nf3an x A R y S z T
18 17 7 nfim x A R y S z T ψ
19 2 nfel1 y A R
20 4 nfel1 y B S
21 nfv y z T
22 19 20 21 nf3an y A R B S z T
23 22 8 nfim y A R B S z T χ
24 3 nfel1 z A R
25 5 nfel1 z B S
26 6 nfel1 z C T
27 24 25 26 nf3an z A R B S C T
28 27 9 nfim z A R B S C T θ
29 eleq1 x = A x R A R
30 29 3anbi1d x = A x R y S z T A R y S z T
31 30 10 imbi12d x = A x R y S z T φ A R y S z T ψ
32 eleq1 y = B y S B S
33 32 3anbi2d y = B A R y S z T A R B S z T
34 33 11 imbi12d y = B A R y S z T ψ A R B S z T χ
35 eleq1 z = C z T C T
36 35 3anbi3d z = C A R B S z T A R B S C T
37 36 12 imbi12d z = C A R B S z T χ A R B S C T θ
38 1 2 3 4 5 6 18 23 28 31 34 37 13 vtocl3gf A R B S C T A R B S C T θ
39 38 pm2.43i A R B S C T θ