Metamath Proof Explorer


Theorem vtocl3gf

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses vtocl3gf.a _ x A
vtocl3gf.b _ y A
vtocl3gf.c _ z A
vtocl3gf.d _ y B
vtocl3gf.e _ z B
vtocl3gf.f _ z C
vtocl3gf.1 x ψ
vtocl3gf.2 y χ
vtocl3gf.3 z θ
vtocl3gf.4 x = A φ ψ
vtocl3gf.5 y = B ψ χ
vtocl3gf.6 z = C χ θ
vtocl3gf.7 φ
Assertion vtocl3gf A V B W C X θ

Proof

Step Hyp Ref Expression
1 vtocl3gf.a _ x A
2 vtocl3gf.b _ y A
3 vtocl3gf.c _ z A
4 vtocl3gf.d _ y B
5 vtocl3gf.e _ z B
6 vtocl3gf.f _ z C
7 vtocl3gf.1 x ψ
8 vtocl3gf.2 y χ
9 vtocl3gf.3 z θ
10 vtocl3gf.4 x = A φ ψ
11 vtocl3gf.5 y = B ψ χ
12 vtocl3gf.6 z = C χ θ
13 vtocl3gf.7 φ
14 elex A V A V
15 2 nfel1 y A V
16 15 8 nfim y A V χ
17 3 nfel1 z A V
18 17 9 nfim z A V θ
19 11 imbi2d y = B A V ψ A V χ
20 12 imbi2d z = C A V χ A V θ
21 1 7 10 13 vtoclgf A V ψ
22 4 5 6 16 18 19 20 21 vtocl2gf B W C X A V θ
23 14 22 mpan9 A V B W C X θ
24 23 3impb A V B W C X θ