Metamath Proof Explorer


Theorem vtocl4g

Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019)

Ref Expression
Hypotheses vtocl4g.1 x = A φ ψ
vtocl4g.2 y = B ψ χ
vtocl4g.3 z = C χ ρ
vtocl4g.4 w = D ρ θ
vtocl4g.5 φ
Assertion vtocl4g A Q B R C S D T θ

Proof

Step Hyp Ref Expression
1 vtocl4g.1 x = A φ ψ
2 vtocl4g.2 y = B ψ χ
3 vtocl4g.3 z = C χ ρ
4 vtocl4g.4 w = D ρ θ
5 vtocl4g.5 φ
6 3 imbi2d z = C A Q B R χ A Q B R ρ
7 4 imbi2d w = D A Q B R ρ A Q B R θ
8 1 2 5 vtocl2g A Q B R χ
9 6 7 8 vtocl2g C S D T A Q B R θ
10 9 impcom A Q B R C S D T θ