Metamath Proof Explorer


Theorem vtoclb

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993)

Ref Expression
Hypotheses vtoclb.1 A V
vtoclb.2 x = A φ χ
vtoclb.3 x = A ψ θ
vtoclb.4 φ ψ
Assertion vtoclb χ θ

Proof

Step Hyp Ref Expression
1 vtoclb.1 A V
2 vtoclb.2 x = A φ χ
3 vtoclb.3 x = A ψ θ
4 vtoclb.4 φ ψ
5 2 3 bibi12d x = A φ ψ χ θ
6 1 5 4 vtocl χ θ