Metamath Proof Explorer


Theorem vtocld

Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 2-Sep-2024)

Ref Expression
Hypotheses vtocld.1 φ A V
vtocld.2 φ x = A ψ χ
vtocld.3 φ ψ
Assertion vtocld φ χ

Proof

Step Hyp Ref Expression
1 vtocld.1 φ A V
2 vtocld.2 φ x = A ψ χ
3 vtocld.3 φ ψ
4 elisset A V x x = A
5 1 4 syl φ x x = A
6 3 adantr φ x = A ψ
7 6 2 mpbid φ x = A χ
8 5 7 exlimddv φ χ