Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocld
Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro , 15-Oct-2016) Avoid ax-10 , ax-11 , ax-12 .
(Revised by SN , 2-Sep-2024)
Ref
Expression
Hypotheses
vtocld.1
⊢ φ → A ∈ V
vtocld.2
⊢ φ ∧ x = A → ψ ↔ χ
vtocld.3
⊢ φ → ψ
Assertion
vtocld
⊢ φ → χ
Proof
Step
Hyp
Ref
Expression
1
vtocld.1
⊢ φ → A ∈ V
2
vtocld.2
⊢ φ ∧ x = A → ψ ↔ χ
3
vtocld.3
⊢ φ → ψ
4
elisset
⊢ A ∈ V → ∃ x x = A
5
1 4
syl
⊢ φ → ∃ x x = A
6
3
adantr
⊢ φ ∧ x = A → ψ
7
6 2
mpbid
⊢ φ ∧ x = A → χ
8
5 7
exlimddv
⊢ φ → χ