Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocldOLD
Metamath Proof Explorer
Description: Obsolete version of vtocld as of 2-Sep-2024. (Contributed by Mario
Carneiro , 15-Oct-2016) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
vtocld.1
⊢ φ → A ∈ V
vtocld.2
⊢ φ ∧ x = A → ψ ↔ χ
vtocld.3
⊢ φ → ψ
Assertion
vtocldOLD
⊢ φ → χ
Proof
Step
Hyp
Ref
Expression
1
vtocld.1
⊢ φ → A ∈ V
2
vtocld.2
⊢ φ ∧ x = A → ψ ↔ χ
3
vtocld.3
⊢ φ → ψ
4
nfv
⊢ Ⅎ x φ
5
nfcvd
⊢ φ → Ⅎ _ x A
6
nfvd
⊢ φ → Ⅎ x χ
7
1 2 3 4 5 6
vtocldf
⊢ φ → χ