Metamath Proof Explorer


Theorem vtocldf

Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses vtocld.1 φ A V
vtocld.2 φ x = A ψ χ
vtocld.3 φ ψ
vtocldf.4 x φ
vtocldf.5 φ _ x A
vtocldf.6 φ x χ
Assertion vtocldf φ χ

Proof

Step Hyp Ref Expression
1 vtocld.1 φ A V
2 vtocld.2 φ x = A ψ χ
3 vtocld.3 φ ψ
4 vtocldf.4 x φ
5 vtocldf.5 φ _ x A
6 vtocldf.6 φ x χ
7 2 ex φ x = A ψ χ
8 4 7 alrimi φ x x = A ψ χ
9 4 3 alrimi φ x ψ
10 vtoclgft _ x A x χ x x = A ψ χ x ψ A V χ
11 5 6 8 9 1 10 syl221anc φ χ