Metamath Proof Explorer


Theorem vtoclegft

Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef .) (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Assertion vtoclegft A B x φ x x = A φ φ

Proof

Step Hyp Ref Expression
1 elisset A B x x = A
2 exim x x = A φ x x = A x φ
3 1 2 mpan9 A B x x = A φ x φ
4 3 3adant2 A B x φ x x = A φ x φ
5 19.9t x φ x φ φ
6 5 3ad2ant2 A B x φ x x = A φ x φ φ
7 4 6 mpbid A B x φ x x = A φ φ