Metamath Proof Explorer


Theorem vtoclegft

Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef .) (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016) (Proof shortened by Wolf Lammen, 26-Jan-2025)

Ref Expression
Assertion vtoclegft A B x φ x x = A φ φ

Proof

Step Hyp Ref Expression
1 biidd x = A φ φ
2 1 ax-gen x x = A φ φ
3 ceqsalt x φ x x = A φ φ A B x x = A φ φ
4 2 3 mp3an2 x φ A B x x = A φ φ
5 4 ancoms A B x φ x x = A φ φ
6 5 biimpd A B x φ x x = A φ φ
7 6 3impia A B x φ x x = A φ φ