Metamath Proof Explorer


Theorem vtoclegftOLD

Description: Obsolete version of vtoclegft as of 26-Jan-2025. (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion vtoclegftOLD A B x φ x x = A φ φ

Proof

Step Hyp Ref Expression
1 elisset A B x x = A
2 exim x x = A φ x x = A x φ
3 1 2 mpan9 A B x x = A φ x φ
4 3 3adant2 A B x φ x x = A φ x φ
5 19.9t x φ x φ φ
6 5 3ad2ant2 A B x φ x x = A φ x φ φ
7 4 6 mpbid A B x φ x x = A φ φ