Metamath Proof Explorer


Theorem vtoclf

Description: Implicit substitution of a class for a setvar variable. This is a generalization of chvar . (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 26-Jan-2025)

Ref Expression
Hypotheses vtoclf.1 x ψ
vtoclf.2 A V
vtoclf.3 x = A φ ψ
vtoclf.4 φ
Assertion vtoclf ψ

Proof

Step Hyp Ref Expression
1 vtoclf.1 x ψ
2 vtoclf.2 A V
3 vtoclf.3 x = A φ ψ
4 vtoclf.4 φ
5 4 3 mpbii x = A ψ
6 1 2 5 vtoclef ψ