Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtoclga
Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM , 20-Aug-1995) Avoid ax-10 and ax-11 . (Revised by Gino Giotto , 20-Aug-2023)
Ref
Expression
Hypotheses
vtoclga.1
⊢ x = A → φ ↔ ψ
vtoclga.2
⊢ x ∈ B → φ
Assertion
vtoclga
⊢ A ∈ B → ψ
Proof
Step
Hyp
Ref
Expression
1
vtoclga.1
⊢ x = A → φ ↔ ψ
2
vtoclga.2
⊢ x ∈ B → φ
3
eleq1
⊢ x = A → x ∈ B ↔ A ∈ B
4
3 1
imbi12d
⊢ x = A → x ∈ B → φ ↔ A ∈ B → ψ
5
4 2
vtoclg
⊢ A ∈ B → A ∈ B → ψ
6
5
pm2.43i
⊢ A ∈ B → ψ