Metamath Proof Explorer


Theorem vtoclgaf

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006) (Revised by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses vtoclgaf.1 _ x A
vtoclgaf.2 x ψ
vtoclgaf.3 x = A φ ψ
vtoclgaf.4 x B φ
Assertion vtoclgaf A B ψ

Proof

Step Hyp Ref Expression
1 vtoclgaf.1 _ x A
2 vtoclgaf.2 x ψ
3 vtoclgaf.3 x = A φ ψ
4 vtoclgaf.4 x B φ
5 1 nfel1 x A B
6 5 2 nfim x A B ψ
7 eleq1 x = A x B A B
8 7 3 imbi12d x = A x B φ A B ψ
9 1 6 8 4 vtoclgf A B A B ψ
10 9 pm2.43i A B ψ