Metamath Proof Explorer


Theorem vtoclgf

Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003) (Proof shortened by Mario Carneiro, 10-Oct-2016)

Ref Expression
Hypotheses vtoclgf.1 _ x A
vtoclgf.2 x ψ
vtoclgf.3 x = A φ ψ
vtoclgf.4 φ
Assertion vtoclgf A V ψ

Proof

Step Hyp Ref Expression
1 vtoclgf.1 _ x A
2 vtoclgf.2 x ψ
3 vtoclgf.3 x = A φ ψ
4 vtoclgf.4 φ
5 elex A V A V
6 1 issetf A V x x = A
7 4 3 mpbii x = A ψ
8 2 7 exlimi x x = A ψ
9 6 8 sylbi A V ψ
10 5 9 syl A V ψ