Metamath Proof Explorer


Theorem vtoclgft

Description: Closed theorem form of vtoclgf . The reverse implication is proven in ceqsal1t . See ceqsalt for a version with x and A disjoint. (Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 12-Oct-2016) (Proof shortened by JJ, 11-Aug-2021) Avoid ax-13 . (Revised by Gino Giotto, 6-Oct-2023)

Ref Expression
Assertion vtoclgft _ x A x ψ x x = A φ ψ x φ A V ψ

Proof

Step Hyp Ref Expression
1 elex A V A V
2 issetft _ x A A V x x = A
3 1 2 imbitrid _ x A A V x x = A
4 3 ad2antrr _ x A x ψ x x = A φ ψ x φ A V x x = A
5 4 3impia _ x A x ψ x x = A φ ψ x φ A V x x = A
6 biimp φ ψ φ ψ
7 6 imim2i x = A φ ψ x = A φ ψ
8 7 com23 x = A φ ψ φ x = A ψ
9 8 imp x = A φ ψ φ x = A ψ
10 9 alanimi x x = A φ ψ x φ x x = A ψ
11 19.23t x ψ x x = A ψ x x = A ψ
12 11 adantl _ x A x ψ x x = A ψ x x = A ψ
13 10 12 imbitrid _ x A x ψ x x = A φ ψ x φ x x = A ψ
14 13 imp _ x A x ψ x x = A φ ψ x φ x x = A ψ
15 14 3adant3 _ x A x ψ x x = A φ ψ x φ A V x x = A ψ
16 5 15 mpd _ x A x ψ x x = A φ ψ x φ A V ψ