Metamath Proof Explorer


Theorem vtoclgft

Description: Closed theorem form of vtoclgf . The reverse implication is proven in ceqsal1t . See ceqsalt for a version with x and A disjoint. (Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 12-Oct-2016) (Proof shortened by JJ, 11-Aug-2021) Avoid ax-13 . (Revised by Gino Giotto, 6-Oct-2023)

Ref Expression
Assertion vtoclgft _ x A x ψ x x = A φ ψ x φ A V ψ

Proof

Step Hyp Ref Expression
1 elissetv A V z z = A
2 nfv z _ x A
3 nfnfc1 x _ x A
4 nfcvd _ x A _ x z
5 id _ x A _ x A
6 4 5 nfeqd _ x A x z = A
7 6 nfnd _ x A x ¬ z = A
8 nfvd _ x A z ¬ x = A
9 eqeq1 z = x z = A x = A
10 9 notbid z = x ¬ z = A ¬ x = A
11 10 a1i _ x A z = x ¬ z = A ¬ x = A
12 2 3 7 8 11 cbv2w _ x A z ¬ z = A x ¬ x = A
13 alnex z ¬ z = A ¬ z z = A
14 alnex x ¬ x = A ¬ x x = A
15 12 13 14 3bitr3g _ x A ¬ z z = A ¬ x x = A
16 15 con4bid _ x A z z = A x x = A
17 1 16 imbitrid _ x A A V x x = A
18 17 ad2antrr _ x A x ψ x x = A φ ψ x φ A V x x = A
19 18 3impia _ x A x ψ x x = A φ ψ x φ A V x x = A
20 biimp φ ψ φ ψ
21 20 imim2i x = A φ ψ x = A φ ψ
22 21 com23 x = A φ ψ φ x = A ψ
23 22 imp x = A φ ψ φ x = A ψ
24 23 alanimi x x = A φ ψ x φ x x = A ψ
25 19.23t x ψ x x = A ψ x x = A ψ
26 25 adantl _ x A x ψ x x = A ψ x x = A ψ
27 24 26 imbitrid _ x A x ψ x x = A φ ψ x φ x x = A ψ
28 27 imp _ x A x ψ x x = A φ ψ x φ x x = A ψ
29 28 3adant3 _ x A x ψ x x = A φ ψ x φ A V x x = A ψ
30 19 29 mpd _ x A x ψ x x = A φ ψ x φ A V ψ