Metamath Proof Explorer


Theorem vtoclgft

Description: Closed theorem form of vtoclgf . (Contributed by NM, 17-Feb-2013) (Revised by Mario Carneiro, 12-Oct-2016) (Proof shortened by JJ, 11-Aug-2021) Avoid ax-13 . (Revised by Gino Giotto, 6-Oct-2023)

Ref Expression
Assertion vtoclgft _ x A x ψ x x = A φ ψ x φ A V ψ

Proof

Step Hyp Ref Expression
1 elisset A V z z = A
2 nfv z _ x A
3 nfnfc1 x _ x A
4 nfcvd _ x A _ x z
5 id _ x A _ x A
6 4 5 nfeqd _ x A x z = A
7 6 nfnd _ x A x ¬ z = A
8 nfvd _ x A z ¬ x = A
9 eqeq1 z = x z = A x = A
10 9 a1i _ x A z = x z = A x = A
11 notbi z = A x = A ¬ z = A ¬ x = A
12 10 11 syl6ib _ x A z = x ¬ z = A ¬ x = A
13 biimp ¬ z = A ¬ x = A ¬ z = A ¬ x = A
14 12 13 syl6 _ x A z = x ¬ z = A ¬ x = A
15 2 3 7 8 14 cbv1v _ x A z ¬ z = A x ¬ x = A
16 equcomi x = z z = x
17 biimpr ¬ z = A ¬ x = A ¬ x = A ¬ z = A
18 16 12 17 syl56 _ x A x = z ¬ x = A ¬ z = A
19 3 2 8 7 18 cbv1v _ x A x ¬ x = A z ¬ z = A
20 15 19 impbid _ x A z ¬ z = A x ¬ x = A
21 alnex z ¬ z = A ¬ z z = A
22 alnex x ¬ x = A ¬ x x = A
23 20 21 22 3bitr3g _ x A ¬ z z = A ¬ x x = A
24 23 con4bid _ x A z z = A x x = A
25 1 24 syl5ib _ x A A V x x = A
26 25 ad2antrr _ x A x ψ x x = A φ ψ x φ A V x x = A
27 26 3impia _ x A x ψ x x = A φ ψ x φ A V x x = A
28 biimp φ ψ φ ψ
29 28 imim2i x = A φ ψ x = A φ ψ
30 29 com23 x = A φ ψ φ x = A ψ
31 30 imp x = A φ ψ φ x = A ψ
32 31 alanimi x x = A φ ψ x φ x x = A ψ
33 19.23t x ψ x x = A ψ x x = A ψ
34 33 adantl _ x A x ψ x x = A ψ x x = A ψ
35 32 34 syl5ib _ x A x ψ x x = A φ ψ x φ x x = A ψ
36 35 imp _ x A x ψ x x = A φ ψ x φ x x = A ψ
37 36 3adant3 _ x A x ψ x x = A φ ψ x φ A V x x = A ψ
38 27 37 mpd _ x A x ψ x x = A φ ψ x φ A V ψ