Metamath Proof Explorer


Theorem vtscl

Description: Closure of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 14-Dec-2021)

Ref Expression
Hypotheses vtsval.n φ N 0
vtsval.x φ X
vtsval.l φ L :
Assertion vtscl φ L vts N X

Proof

Step Hyp Ref Expression
1 vtsval.n φ N 0
2 vtsval.x φ X
3 vtsval.l φ L :
4 1 2 3 vtsval φ L vts N X = a = 1 N L a e i 2 π a X
5 fzfid φ 1 N Fin
6 3 adantr φ a 1 N L :
7 fz1ssnn 1 N
8 7 a1i φ 1 N
9 8 sselda φ a 1 N a
10 6 9 ffvelrnd φ a 1 N L a
11 ax-icn i
12 2cn 2
13 picn π
14 12 13 mulcli 2 π
15 11 14 mulcli i 2 π
16 15 a1i φ a 1 N i 2 π
17 9 nncnd φ a 1 N a
18 2 adantr φ a 1 N X
19 17 18 mulcld φ a 1 N a X
20 16 19 mulcld φ a 1 N i 2 π a X
21 20 efcld φ a 1 N e i 2 π a X
22 10 21 mulcld φ a 1 N L a e i 2 π a X
23 5 22 fsumcl φ a = 1 N L a e i 2 π a X
24 4 23 eqeltrd φ L vts N X