Metamath Proof Explorer


Theorem vtsprod

Description: Express the Vinogradov trigonometric sums to the power of S (Contributed by Thierry Arnoux, 12-Dec-2021)

Ref Expression
Hypotheses vtsval.n φ N 0
vtsval.x φ X
vtsprod.s φ S 0
vtsprod.l φ L : 0 ..^ S
Assertion vtsprod φ a 0 ..^ S L a vts N X = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m X

Proof

Step Hyp Ref Expression
1 vtsval.n φ N 0
2 vtsval.x φ X
3 vtsprod.s φ S 0
4 vtsprod.l φ L : 0 ..^ S
5 ax-icn i
6 5 a1i φ i
7 2cnd φ 2
8 picn π
9 8 a1i φ π
10 7 9 mulcld φ 2 π
11 6 10 mulcld φ i 2 π
12 11 2 mulcld φ i 2 π X
13 12 efcld φ e i 2 π X
14 1 3 13 4 breprexp φ a 0 ..^ S b = 1 N L a b e i 2 π X b = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π X m
15 1 adantr φ a 0 ..^ S N 0
16 2 adantr φ a 0 ..^ S X
17 4 ffvelrnda φ a 0 ..^ S L a
18 elmapi L a L a :
19 17 18 syl φ a 0 ..^ S L a :
20 15 16 19 vtsval φ a 0 ..^ S L a vts N X = b = 1 N L a b e i 2 π b X
21 fzssz 1 N
22 simpr φ a 0 ..^ S b 1 N b 1 N
23 21 22 sselid φ a 0 ..^ S b 1 N b
24 23 zcnd φ a 0 ..^ S b 1 N b
25 11 ad2antrr φ a 0 ..^ S b 1 N i 2 π
26 16 adantr φ a 0 ..^ S b 1 N X
27 24 25 26 mul12d φ a 0 ..^ S b 1 N b i 2 π X = i 2 π b X
28 27 fveq2d φ a 0 ..^ S b 1 N e b i 2 π X = e i 2 π b X
29 12 ad2antrr φ a 0 ..^ S b 1 N i 2 π X
30 efexp i 2 π X b e b i 2 π X = e i 2 π X b
31 29 23 30 syl2anc φ a 0 ..^ S b 1 N e b i 2 π X = e i 2 π X b
32 28 31 eqtr3d φ a 0 ..^ S b 1 N e i 2 π b X = e i 2 π X b
33 32 oveq2d φ a 0 ..^ S b 1 N L a b e i 2 π b X = L a b e i 2 π X b
34 33 sumeq2dv φ a 0 ..^ S b = 1 N L a b e i 2 π b X = b = 1 N L a b e i 2 π X b
35 20 34 eqtrd φ a 0 ..^ S L a vts N X = b = 1 N L a b e i 2 π X b
36 35 prodeq2dv φ a 0 ..^ S L a vts N X = a 0 ..^ S b = 1 N L a b e i 2 π X b
37 fzssz 0 S N
38 simpr φ m 0 S N m 0 S N
39 37 38 sselid φ m 0 S N m
40 39 adantr φ m 0 S N c 1 N repr S m m
41 40 zcnd φ m 0 S N c 1 N repr S m m
42 11 ad2antrr φ m 0 S N c 1 N repr S m i 2 π
43 2 ad2antrr φ m 0 S N c 1 N repr S m X
44 41 42 43 mul12d φ m 0 S N c 1 N repr S m m i 2 π X = i 2 π m X
45 44 fveq2d φ m 0 S N c 1 N repr S m e m i 2 π X = e i 2 π m X
46 12 ad2antrr φ m 0 S N c 1 N repr S m i 2 π X
47 efexp i 2 π X m e m i 2 π X = e i 2 π X m
48 46 40 47 syl2anc φ m 0 S N c 1 N repr S m e m i 2 π X = e i 2 π X m
49 45 48 eqtr3d φ m 0 S N c 1 N repr S m e i 2 π m X = e i 2 π X m
50 49 oveq2d φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m X = a 0 ..^ S L a c a e i 2 π X m
51 50 sumeq2dv φ m 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m X = c 1 N repr S m a 0 ..^ S L a c a e i 2 π X m
52 51 sumeq2dv φ m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m X = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π X m
53 14 36 52 3eqtr4d φ a 0 ..^ S L a vts N X = m = 0 S N c 1 N repr S m a 0 ..^ S L a c a e i 2 π m X