Step |
Hyp |
Ref |
Expression |
1 |
|
vtsval.n |
|
2 |
|
vtsval.x |
|
3 |
|
vtsprod.s |
|
4 |
|
vtsprod.l |
|
5 |
|
ax-icn |
|
6 |
5
|
a1i |
|
7 |
|
2cnd |
|
8 |
|
picn |
|
9 |
8
|
a1i |
|
10 |
7 9
|
mulcld |
|
11 |
6 10
|
mulcld |
|
12 |
11 2
|
mulcld |
|
13 |
12
|
efcld |
|
14 |
1 3 13 4
|
breprexp |
|
15 |
1
|
adantr |
|
16 |
2
|
adantr |
|
17 |
4
|
ffvelrnda |
|
18 |
|
elmapi |
|
19 |
17 18
|
syl |
|
20 |
15 16 19
|
vtsval |
|
21 |
|
fzssz |
|
22 |
|
simpr |
|
23 |
21 22
|
sselid |
|
24 |
23
|
zcnd |
|
25 |
11
|
ad2antrr |
|
26 |
16
|
adantr |
|
27 |
24 25 26
|
mul12d |
|
28 |
27
|
fveq2d |
|
29 |
12
|
ad2antrr |
|
30 |
|
efexp |
|
31 |
29 23 30
|
syl2anc |
|
32 |
28 31
|
eqtr3d |
|
33 |
32
|
oveq2d |
|
34 |
33
|
sumeq2dv |
|
35 |
20 34
|
eqtrd |
|
36 |
35
|
prodeq2dv |
|
37 |
|
fzssz |
|
38 |
|
simpr |
|
39 |
37 38
|
sselid |
|
40 |
39
|
adantr |
|
41 |
40
|
zcnd |
|
42 |
11
|
ad2antrr |
|
43 |
2
|
ad2antrr |
|
44 |
41 42 43
|
mul12d |
|
45 |
44
|
fveq2d |
|
46 |
12
|
ad2antrr |
|
47 |
|
efexp |
|
48 |
46 40 47
|
syl2anc |
|
49 |
45 48
|
eqtr3d |
|
50 |
49
|
oveq2d |
|
51 |
50
|
sumeq2dv |
|
52 |
51
|
sumeq2dv |
|
53 |
14 36 52
|
3eqtr4d |
|