Metamath Proof Explorer


Theorem vtsval

Description: Value of the Vinogradov trigonometric sums. (Contributed by Thierry Arnoux, 1-Dec-2021)

Ref Expression
Hypotheses vtsval.n φ N 0
vtsval.x φ X
vtsval.l φ L :
Assertion vtsval φ L vts N X = a = 1 N L a e i 2 π a X

Proof

Step Hyp Ref Expression
1 vtsval.n φ N 0
2 vtsval.x φ X
3 vtsval.l φ L :
4 cnex V
5 nnex V
6 4 5 elmap L L :
7 3 6 sylibr φ L
8 fveq1 l = L l a = L a
9 8 oveq1d l = L l a e i 2 π a x = L a e i 2 π a x
10 9 sumeq2sdv l = L a = 1 n l a e i 2 π a x = a = 1 n L a e i 2 π a x
11 10 mpteq2dv l = L x a = 1 n l a e i 2 π a x = x a = 1 n L a e i 2 π a x
12 oveq2 n = N 1 n = 1 N
13 12 sumeq1d n = N a = 1 n L a e i 2 π a x = a = 1 N L a e i 2 π a x
14 13 mpteq2dv n = N x a = 1 n L a e i 2 π a x = x a = 1 N L a e i 2 π a x
15 df-vts vts = l , n 0 x a = 1 n l a e i 2 π a x
16 4 mptex x a = 1 N L a e i 2 π a x V
17 11 14 15 16 ovmpo L N 0 L vts N = x a = 1 N L a e i 2 π a x
18 7 1 17 syl2anc φ L vts N = x a = 1 N L a e i 2 π a x
19 oveq2 x = X a x = a X
20 19 oveq2d x = X i 2 π a x = i 2 π a X
21 20 fveq2d x = X e i 2 π a x = e i 2 π a X
22 21 oveq2d x = X L a e i 2 π a x = L a e i 2 π a X
23 22 sumeq2sdv x = X a = 1 N L a e i 2 π a x = a = 1 N L a e i 2 π a X
24 23 adantl φ x = X a = 1 N L a e i 2 π a x = a = 1 N L a e i 2 π a X
25 sumex a = 1 N L a e i 2 π a X V
26 25 a1i φ a = 1 N L a e i 2 π a X V
27 18 24 2 26 fvmptd φ L vts N X = a = 1 N L a e i 2 π a X