Metamath Proof Explorer


Theorem vtxdeqd

Description: Equality theorem for the vertex degree: If two graphs are structurally equal, their vertex degree functions are equal. (Contributed by AV, 26-Feb-2021)

Ref Expression
Hypotheses vtxdeqd.g φ G X
vtxdeqd.h φ H Y
vtxdeqd.v φ Vtx H = Vtx G
vtxdeqd.i φ iEdg H = iEdg G
Assertion vtxdeqd φ VtxDeg H = VtxDeg G

Proof

Step Hyp Ref Expression
1 vtxdeqd.g φ G X
2 vtxdeqd.h φ H Y
3 vtxdeqd.v φ Vtx H = Vtx G
4 vtxdeqd.i φ iEdg H = iEdg G
5 4 dmeqd φ dom iEdg H = dom iEdg G
6 4 fveq1d φ iEdg H x = iEdg G x
7 6 eleq2d φ u iEdg H x u iEdg G x
8 5 7 rabeqbidv φ x dom iEdg H | u iEdg H x = x dom iEdg G | u iEdg G x
9 8 fveq2d φ x dom iEdg H | u iEdg H x = x dom iEdg G | u iEdg G x
10 6 eqeq1d φ iEdg H x = u iEdg G x = u
11 5 10 rabeqbidv φ x dom iEdg H | iEdg H x = u = x dom iEdg G | iEdg G x = u
12 11 fveq2d φ x dom iEdg H | iEdg H x = u = x dom iEdg G | iEdg G x = u
13 9 12 oveq12d φ x dom iEdg H | u iEdg H x + 𝑒 x dom iEdg H | iEdg H x = u = x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
14 3 13 mpteq12dv φ u Vtx H x dom iEdg H | u iEdg H x + 𝑒 x dom iEdg H | iEdg H x = u = u Vtx G x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
15 eqid Vtx H = Vtx H
16 eqid iEdg H = iEdg H
17 eqid dom iEdg H = dom iEdg H
18 15 16 17 vtxdgfval H Y VtxDeg H = u Vtx H x dom iEdg H | u iEdg H x + 𝑒 x dom iEdg H | iEdg H x = u
19 2 18 syl φ VtxDeg H = u Vtx H x dom iEdg H | u iEdg H x + 𝑒 x dom iEdg H | iEdg H x = u
20 eqid Vtx G = Vtx G
21 eqid iEdg G = iEdg G
22 eqid dom iEdg G = dom iEdg G
23 20 21 22 vtxdgfval G X VtxDeg G = u Vtx G x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
24 1 23 syl φ VtxDeg G = u Vtx G x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
25 14 19 24 3eqtr4d φ VtxDeg H = VtxDeg G