Metamath Proof Explorer


Theorem vtxdgf

Description: The vertex degree function is a function from vertices to extended nonnegative integers. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 10-Dec-2020)

Ref Expression
Hypothesis vtxdgf.v V = Vtx G
Assertion vtxdgf G W VtxDeg G : V 0 *

Proof

Step Hyp Ref Expression
1 vtxdgf.v V = Vtx G
2 eqid iEdg G = iEdg G
3 eqid dom iEdg G = dom iEdg G
4 1 2 3 vtxdgfval G W VtxDeg G = u V x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u
5 eqid x dom iEdg G | u iEdg G x = x dom iEdg G | u iEdg G x
6 fvex iEdg G V
7 dmexg iEdg G V dom iEdg G V
8 6 7 mp1i G W u V dom iEdg G V
9 5 8 rabexd G W u V x dom iEdg G | u iEdg G x V
10 hashxnn0 x dom iEdg G | u iEdg G x V x dom iEdg G | u iEdg G x 0 *
11 9 10 syl G W u V x dom iEdg G | u iEdg G x 0 *
12 eqid x dom iEdg G | iEdg G x = u = x dom iEdg G | iEdg G x = u
13 12 8 rabexd G W u V x dom iEdg G | iEdg G x = u V
14 hashxnn0 x dom iEdg G | iEdg G x = u V x dom iEdg G | iEdg G x = u 0 *
15 13 14 syl G W u V x dom iEdg G | iEdg G x = u 0 *
16 xnn0xaddcl x dom iEdg G | u iEdg G x 0 * x dom iEdg G | iEdg G x = u 0 * x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u 0 *
17 11 15 16 syl2anc G W u V x dom iEdg G | u iEdg G x + 𝑒 x dom iEdg G | iEdg G x = u 0 *
18 4 17 fmpt3d G W VtxDeg G : V 0 *