Metamath Proof Explorer


Theorem vtxdgfisf

Description: The vertex degree function on graphs of finite size is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)

Ref Expression
Hypotheses vtxdgf.v V = Vtx G
vtxdg0e.i I = iEdg G
vtxdgfisnn0.a A = dom I
Assertion vtxdgfisf G W A Fin VtxDeg G : V 0

Proof

Step Hyp Ref Expression
1 vtxdgf.v V = Vtx G
2 vtxdg0e.i I = iEdg G
3 vtxdgfisnn0.a A = dom I
4 1 vtxdgf G W VtxDeg G : V 0 *
5 4 adantr G W A Fin VtxDeg G : V 0 *
6 5 ffnd G W A Fin VtxDeg G Fn V
7 1 2 3 vtxdgfisnn0 A Fin u V VtxDeg G u 0
8 7 adantll G W A Fin u V VtxDeg G u 0
9 8 ralrimiva G W A Fin u V VtxDeg G u 0
10 ffnfv VtxDeg G : V 0 VtxDeg G Fn V u V VtxDeg G u 0
11 6 9 10 sylanbrc G W A Fin VtxDeg G : V 0