Metamath Proof Explorer


Theorem vtxdgfisnn0

Description: The degree of a vertex in a graph of finite size is a nonnegative integer. (Contributed by Alexander van der Vekens, 10-Mar-2018) (Revised by AV, 11-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypotheses vtxdgf.v V=VtxG
vtxdg0e.i I=iEdgG
vtxdgfisnn0.a A=domI
Assertion vtxdgfisnn0 AFinUVVtxDegGU0

Proof

Step Hyp Ref Expression
1 vtxdgf.v V=VtxG
2 vtxdg0e.i I=iEdgG
3 vtxdgfisnn0.a A=domI
4 1 2 3 vtxdgfival AFinUVVtxDegGU=xA|UIx+xA|Ix=U
5 rabfi AFinxA|UIxFin
6 hashcl xA|UIxFinxA|UIx0
7 5 6 syl AFinxA|UIx0
8 rabfi AFinxA|Ix=UFin
9 hashcl xA|Ix=UFinxA|Ix=U0
10 8 9 syl AFinxA|Ix=U0
11 7 10 nn0addcld AFinxA|UIx+xA|Ix=U0
12 11 adantr AFinUVxA|UIx+xA|Ix=U0
13 4 12 eqeltrd AFinUVVtxDegGU0