Metamath Proof Explorer


Theorem vtxdgfival

Description: The degree of a vertex for graphs of finite size. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Jan-2018) (Revised by AV, 8-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypotheses vtxdgval.v V = Vtx G
vtxdgval.i I = iEdg G
vtxdgval.a A = dom I
Assertion vtxdgfival A Fin U V VtxDeg G U = x A | U I x + x A | I x = U

Proof

Step Hyp Ref Expression
1 vtxdgval.v V = Vtx G
2 vtxdgval.i I = iEdg G
3 vtxdgval.a A = dom I
4 1 2 3 vtxdgval U V VtxDeg G U = x A | U I x + 𝑒 x A | I x = U
5 4 adantl A Fin U V VtxDeg G U = x A | U I x + 𝑒 x A | I x = U
6 rabfi A Fin x A | U I x Fin
7 hashcl x A | U I x Fin x A | U I x 0
8 6 7 syl A Fin x A | U I x 0
9 8 nn0red A Fin x A | U I x
10 rabfi A Fin x A | I x = U Fin
11 hashcl x A | I x = U Fin x A | I x = U 0
12 10 11 syl A Fin x A | I x = U 0
13 12 nn0red A Fin x A | I x = U
14 9 13 jca A Fin x A | U I x x A | I x = U
15 14 adantr A Fin U V x A | U I x x A | I x = U
16 rexadd x A | U I x x A | I x = U x A | U I x + 𝑒 x A | I x = U = x A | U I x + x A | I x = U
17 15 16 syl A Fin U V x A | U I x + 𝑒 x A | I x = U = x A | U I x + x A | I x = U
18 5 17 eqtrd A Fin U V VtxDeg G U = x A | U I x + x A | I x = U