Database
GRAPH THEORY
Undirected graphs
Vertex degree
vtxdgfusgr
Metamath Proof Explorer
Description: In a finite simple graph, the degree of each vertex is finite.
(Contributed by Alexander van der Vekens , 10-Mar-2018) (Revised by AV , 12-Dec-2020)
Ref
Expression
Hypothesis
vtxdgfusgrf.v
⊢ V = Vtx ⁡ G
Assertion
vtxdgfusgr
⊢ G ∈ FinUSGraph → ∀ v ∈ V VtxDeg ⁡ G ⁡ v ∈ ℕ 0
Proof
Step
Hyp
Ref
Expression
1
vtxdgfusgrf.v
⊢ V = Vtx ⁡ G
2
1
vtxdgfusgrf
⊢ G ∈ FinUSGraph → VtxDeg ⁡ G : V ⟶ ℕ 0
3
2
ffvelrnda
⊢ G ∈ FinUSGraph ∧ v ∈ V → VtxDeg ⁡ G ⁡ v ∈ ℕ 0
4
3
ralrimiva
⊢ G ∈ FinUSGraph → ∀ v ∈ V VtxDeg ⁡ G ⁡ v ∈ ℕ 0