Metamath Proof Explorer


Theorem vtxdgfusgrf

Description: The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020)

Ref Expression
Hypothesis vtxdgfusgrf.v V = Vtx G
Assertion vtxdgfusgrf G FinUSGraph VtxDeg G : V 0

Proof

Step Hyp Ref Expression
1 vtxdgfusgrf.v V = Vtx G
2 fusgrfis G FinUSGraph Edg G Fin
3 fusgrusgr G FinUSGraph G USGraph
4 eqid iEdg G = iEdg G
5 eqid Edg G = Edg G
6 4 5 usgredgffibi G USGraph Edg G Fin iEdg G Fin
7 3 6 syl G FinUSGraph Edg G Fin iEdg G Fin
8 usgrfun G USGraph Fun iEdg G
9 fundmfibi Fun iEdg G iEdg G Fin dom iEdg G Fin
10 3 8 9 3syl G FinUSGraph iEdg G Fin dom iEdg G Fin
11 7 10 bitrd G FinUSGraph Edg G Fin dom iEdg G Fin
12 2 11 mpbid G FinUSGraph dom iEdg G Fin
13 eqid dom iEdg G = dom iEdg G
14 1 4 13 vtxdgfisf G FinUSGraph dom iEdg G Fin VtxDeg G : V 0
15 12 14 mpdan G FinUSGraph VtxDeg G : V 0