Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgfval.v |
|
2 |
|
vtxdgfval.i |
|
3 |
|
vtxdgfval.a |
|
4 |
|
df-vtxdg |
|
5 |
|
fvex |
|
6 |
|
fvex |
|
7 |
|
simpl |
|
8 |
|
dmeq |
|
9 |
|
fveq1 |
|
10 |
9
|
eleq2d |
|
11 |
8 10
|
rabeqbidv |
|
12 |
11
|
fveq2d |
|
13 |
9
|
eqeq1d |
|
14 |
8 13
|
rabeqbidv |
|
15 |
14
|
fveq2d |
|
16 |
12 15
|
oveq12d |
|
17 |
16
|
adantl |
|
18 |
7 17
|
mpteq12dv |
|
19 |
5 6 18
|
csbie2 |
|
20 |
|
fveq2 |
|
21 |
20 1
|
eqtr4di |
|
22 |
|
fveq2 |
|
23 |
22
|
dmeqd |
|
24 |
2
|
dmeqi |
|
25 |
3 24
|
eqtri |
|
26 |
23 25
|
eqtr4di |
|
27 |
22 2
|
eqtr4di |
|
28 |
27
|
fveq1d |
|
29 |
28
|
eleq2d |
|
30 |
26 29
|
rabeqbidv |
|
31 |
30
|
fveq2d |
|
32 |
28
|
eqeq1d |
|
33 |
26 32
|
rabeqbidv |
|
34 |
33
|
fveq2d |
|
35 |
31 34
|
oveq12d |
|
36 |
21 35
|
mpteq12dv |
|
37 |
36
|
adantl |
|
38 |
19 37
|
eqtrid |
|
39 |
|
elex |
|
40 |
1
|
fvexi |
|
41 |
|
mptexg |
|
42 |
40 41
|
mp1i |
|
43 |
4 38 39 42
|
fvmptd2 |
|