Metamath Proof Explorer


Theorem vtxdginducedm1fi

Description: The degree of a vertex v in the induced subgraph S of a pseudograph G of finite size obtained by removing one vertex N plus the number of edges joining the vertex v and the vertex N is the degree of the vertex v in the pseudograph G . (Contributed by AV, 18-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v V = Vtx G
vtxdginducedm1.e E = iEdg G
vtxdginducedm1.k K = V N
vtxdginducedm1.i I = i dom E | N E i
vtxdginducedm1.p P = E I
vtxdginducedm1.s S = K P
vtxdginducedm1.j J = i dom E | N E i
Assertion vtxdginducedm1fi E Fin v V N VtxDeg G v = VtxDeg S v + l J | v E l

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v V = Vtx G
2 vtxdginducedm1.e E = iEdg G
3 vtxdginducedm1.k K = V N
4 vtxdginducedm1.i I = i dom E | N E i
5 vtxdginducedm1.p P = E I
6 vtxdginducedm1.s S = K P
7 vtxdginducedm1.j J = i dom E | N E i
8 1 2 3 4 5 6 7 vtxdginducedm1 v V N VtxDeg G v = VtxDeg S v + 𝑒 l J | v E l
9 5 dmeqi dom P = dom E I
10 finresfin E Fin E I Fin
11 dmfi E I Fin dom E I Fin
12 10 11 syl E Fin dom E I Fin
13 9 12 eqeltrid E Fin dom P Fin
14 6 fveq2i Vtx S = Vtx K P
15 1 fvexi V V
16 15 difexi V N V
17 3 16 eqeltri K V
18 2 fvexi E V
19 18 resex E I V
20 5 19 eqeltri P V
21 17 20 opvtxfvi Vtx K P = K
22 14 21 3 3eqtrri V N = Vtx S
23 1 2 3 4 5 6 vtxdginducedm1lem1 iEdg S = P
24 23 eqcomi P = iEdg S
25 eqid dom P = dom P
26 22 24 25 vtxdgfisnn0 dom P Fin v V N VtxDeg S v 0
27 13 26 sylan E Fin v V N VtxDeg S v 0
28 27 nn0red E Fin v V N VtxDeg S v
29 dmfi E Fin dom E Fin
30 rabfi dom E Fin i dom E | N E i Fin
31 29 30 syl E Fin i dom E | N E i Fin
32 7 31 eqeltrid E Fin J Fin
33 rabfi J Fin l J | v E l Fin
34 hashcl l J | v E l Fin l J | v E l 0
35 32 33 34 3syl E Fin l J | v E l 0
36 35 adantr E Fin v V N l J | v E l 0
37 36 nn0red E Fin v V N l J | v E l
38 28 37 rexaddd E Fin v V N VtxDeg S v + 𝑒 l J | v E l = VtxDeg S v + l J | v E l
39 38 eqeq2d E Fin v V N VtxDeg G v = VtxDeg S v + 𝑒 l J | v E l VtxDeg G v = VtxDeg S v + l J | v E l
40 39 biimpd E Fin v V N VtxDeg G v = VtxDeg S v + 𝑒 l J | v E l VtxDeg G v = VtxDeg S v + l J | v E l
41 40 ralimdva E Fin v V N VtxDeg G v = VtxDeg S v + 𝑒 l J | v E l v V N VtxDeg G v = VtxDeg S v + l J | v E l
42 8 41 mpi E Fin v V N VtxDeg G v = VtxDeg S v + l J | v E l