Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdginducedm1.v |
|
2 |
|
vtxdginducedm1.e |
|
3 |
|
vtxdginducedm1.k |
|
4 |
|
vtxdginducedm1.i |
|
5 |
|
vtxdginducedm1.p |
|
6 |
|
vtxdginducedm1.s |
|
7 |
|
vtxdginducedm1.j |
|
8 |
1 2 3 4 5 6 7
|
vtxdginducedm1 |
|
9 |
5
|
dmeqi |
|
10 |
|
finresfin |
|
11 |
|
dmfi |
|
12 |
10 11
|
syl |
|
13 |
9 12
|
eqeltrid |
|
14 |
6
|
fveq2i |
|
15 |
1
|
fvexi |
|
16 |
15
|
difexi |
|
17 |
3 16
|
eqeltri |
|
18 |
2
|
fvexi |
|
19 |
18
|
resex |
|
20 |
5 19
|
eqeltri |
|
21 |
17 20
|
opvtxfvi |
|
22 |
14 21 3
|
3eqtrri |
|
23 |
1 2 3 4 5 6
|
vtxdginducedm1lem1 |
|
24 |
23
|
eqcomi |
|
25 |
|
eqid |
|
26 |
22 24 25
|
vtxdgfisnn0 |
|
27 |
13 26
|
sylan |
|
28 |
27
|
nn0red |
|
29 |
|
dmfi |
|
30 |
|
rabfi |
|
31 |
29 30
|
syl |
|
32 |
7 31
|
eqeltrid |
|
33 |
|
rabfi |
|
34 |
|
hashcl |
|
35 |
32 33 34
|
3syl |
|
36 |
35
|
adantr |
|
37 |
36
|
nn0red |
|
38 |
28 37
|
rexaddd |
|
39 |
38
|
eqeq2d |
|
40 |
39
|
biimpd |
|
41 |
40
|
ralimdva |
|
42 |
8 41
|
mpi |
|