Metamath Proof Explorer


Theorem vtxdginducedm1lem2

Description: Lemma 2 for vtxdginducedm1 : the domain of the edge function in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v V = Vtx G
vtxdginducedm1.e E = iEdg G
vtxdginducedm1.k K = V N
vtxdginducedm1.i I = i dom E | N E i
vtxdginducedm1.p P = E I
vtxdginducedm1.s S = K P
Assertion vtxdginducedm1lem2 dom iEdg S = I

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v V = Vtx G
2 vtxdginducedm1.e E = iEdg G
3 vtxdginducedm1.k K = V N
4 vtxdginducedm1.i I = i dom E | N E i
5 vtxdginducedm1.p P = E I
6 vtxdginducedm1.s S = K P
7 1 2 3 4 5 6 vtxdginducedm1lem1 iEdg S = P
8 7 5 eqtri iEdg S = E I
9 8 dmeqi dom iEdg S = dom E I
10 4 ssrab3 I dom E
11 ssdmres I dom E dom E I = I
12 10 11 mpbi dom E I = I
13 9 12 eqtri dom iEdg S = I