Metamath Proof Explorer


Theorem vtxdginducedm1lem3

Description: Lemma 3 for vtxdginducedm1 : an edge in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v V = Vtx G
vtxdginducedm1.e E = iEdg G
vtxdginducedm1.k K = V N
vtxdginducedm1.i I = i dom E | N E i
vtxdginducedm1.p P = E I
vtxdginducedm1.s S = K P
Assertion vtxdginducedm1lem3 H I iEdg S H = E H

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v V = Vtx G
2 vtxdginducedm1.e E = iEdg G
3 vtxdginducedm1.k K = V N
4 vtxdginducedm1.i I = i dom E | N E i
5 vtxdginducedm1.p P = E I
6 vtxdginducedm1.s S = K P
7 1 2 3 4 5 6 vtxdginducedm1lem1 iEdg S = P
8 7 5 eqtri iEdg S = E I
9 8 fveq1i iEdg S H = E I H
10 fvres H I E I H = E H
11 9 10 syl5eq H I iEdg S H = E H