Database
GRAPH THEORY
Undirected graphs
Vertex degree
vtxdgop
Next ⟩
vtxdgf
Metamath Proof Explorer
Ascii
Unicode
Theorem
vtxdgop
Description:
The vertex degree expressed as operation.
(Contributed by
AV
, 12-Dec-2021)
Ref
Expression
Assertion
vtxdgop
⊢
G
∈
W
→
VtxDeg
⁡
G
=
Vtx
⁡
G
VtxDeg
iEdg
⁡
G
Proof
Step
Hyp
Ref
Expression
1
opex
⊢
Vtx
⁡
G
iEdg
⁡
G
∈
V
2
fvex
⊢
Vtx
⁡
G
∈
V
3
fvex
⊢
iEdg
⁡
G
∈
V
4
2
3
opvtxfvi
⊢
Vtx
⁡
Vtx
⁡
G
iEdg
⁡
G
=
Vtx
⁡
G
5
4
eqcomi
⊢
Vtx
⁡
G
=
Vtx
⁡
Vtx
⁡
G
iEdg
⁡
G
6
2
3
opiedgfvi
⊢
iEdg
⁡
Vtx
⁡
G
iEdg
⁡
G
=
iEdg
⁡
G
7
6
eqcomi
⊢
iEdg
⁡
G
=
iEdg
⁡
Vtx
⁡
G
iEdg
⁡
G
8
eqid
⊢
dom
⁡
iEdg
⁡
G
=
dom
⁡
iEdg
⁡
G
9
5
7
8
vtxdgfval
⊢
Vtx
⁡
G
iEdg
⁡
G
∈
V
→
VtxDeg
⁡
Vtx
⁡
G
iEdg
⁡
G
=
u
∈
Vtx
⁡
G
⟼
x
∈
dom
⁡
iEdg
⁡
G
|
u
∈
iEdg
⁡
G
⁡
x
+
𝑒
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
=
u
10
1
9
mp1i
⊢
G
∈
W
→
VtxDeg
⁡
Vtx
⁡
G
iEdg
⁡
G
=
u
∈
Vtx
⁡
G
⟼
x
∈
dom
⁡
iEdg
⁡
G
|
u
∈
iEdg
⁡
G
⁡
x
+
𝑒
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
=
u
11
df-ov
⊢
Vtx
⁡
G
VtxDeg
iEdg
⁡
G
=
VtxDeg
⁡
Vtx
⁡
G
iEdg
⁡
G
12
11
a1i
⊢
G
∈
W
→
Vtx
⁡
G
VtxDeg
iEdg
⁡
G
=
VtxDeg
⁡
Vtx
⁡
G
iEdg
⁡
G
13
eqid
⊢
Vtx
⁡
G
=
Vtx
⁡
G
14
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
15
13
14
8
vtxdgfval
⊢
G
∈
W
→
VtxDeg
⁡
G
=
u
∈
Vtx
⁡
G
⟼
x
∈
dom
⁡
iEdg
⁡
G
|
u
∈
iEdg
⁡
G
⁡
x
+
𝑒
x
∈
dom
⁡
iEdg
⁡
G
|
iEdg
⁡
G
⁡
x
=
u
16
10
12
15
3eqtr4rd
⊢
G
∈
W
→
VtxDeg
⁡
G
=
Vtx
⁡
G
VtxDeg
iEdg
⁡
G