Metamath Proof Explorer


Theorem vtxduhgr0edgnel

Description: A vertex in a hypergraph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 24-Dec-2020)

Ref Expression
Hypotheses vtxdushgrfvedg.v V = Vtx G
vtxdushgrfvedg.e E = Edg G
vtxdushgrfvedg.d D = VtxDeg G
Assertion vtxduhgr0edgnel G UHGraph U V D U = 0 ¬ e E U e

Proof

Step Hyp Ref Expression
1 vtxdushgrfvedg.v V = Vtx G
2 vtxdushgrfvedg.e E = Edg G
3 vtxdushgrfvedg.d D = VtxDeg G
4 eqid iEdg G = iEdg G
5 1 4 3 vtxd0nedgb U V D U = 0 ¬ i dom iEdg G U iEdg G i
6 5 adantl G UHGraph U V D U = 0 ¬ i dom iEdg G U iEdg G i
7 4 2 uhgrvtxedgiedgb G UHGraph U V i dom iEdg G U iEdg G i e E U e
8 7 notbid G UHGraph U V ¬ i dom iEdg G U iEdg G i ¬ e E U e
9 6 8 bitrd G UHGraph U V D U = 0 ¬ e E U e