Metamath Proof Explorer


Theorem vtxduhgrun

Description: The degree of a vertex in the union of two hypergraphs on the same vertex set is the sum of the degrees of the vertex in each hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 21-Dec-2017) (Revised by AV, 12-Dec-2020) (Proof shortened by AV, 19-Feb-2021)

Ref Expression
Hypotheses vtxduhgrun.i I=iEdgG
vtxduhgrun.j J=iEdgH
vtxduhgrun.vg V=VtxG
vtxduhgrun.vh φVtxH=V
vtxduhgrun.vu φVtxU=V
vtxduhgrun.d φdomIdomJ=
vtxduhgrun.g φGUHGraph
vtxduhgrun.h φHUHGraph
vtxduhgrun.n φNV
vtxduhgrun.u φiEdgU=IJ
Assertion vtxduhgrun φVtxDegUN=VtxDegGN+𝑒VtxDegHN

Proof

Step Hyp Ref Expression
1 vtxduhgrun.i I=iEdgG
2 vtxduhgrun.j J=iEdgH
3 vtxduhgrun.vg V=VtxG
4 vtxduhgrun.vh φVtxH=V
5 vtxduhgrun.vu φVtxU=V
6 vtxduhgrun.d φdomIdomJ=
7 vtxduhgrun.g φGUHGraph
8 vtxduhgrun.h φHUHGraph
9 vtxduhgrun.n φNV
10 vtxduhgrun.u φiEdgU=IJ
11 1 uhgrfun GUHGraphFunI
12 7 11 syl φFunI
13 2 uhgrfun HUHGraphFunJ
14 8 13 syl φFunJ
15 1 2 3 4 5 6 12 14 9 10 vtxdun φVtxDegUN=VtxDegGN+𝑒VtxDegHN