Metamath Proof Explorer


Theorem vtxdumgrval

Description: The value of the vertex degree function for a multigraph. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 23-Feb-2021)

Ref Expression
Hypotheses vtxdlfgrval.v V = Vtx G
vtxdlfgrval.i I = iEdg G
vtxdlfgrval.a A = dom I
vtxdlfgrval.d D = VtxDeg G
Assertion vtxdumgrval G UMGraph U V D U = x A | U I x

Proof

Step Hyp Ref Expression
1 vtxdlfgrval.v V = Vtx G
2 vtxdlfgrval.i I = iEdg G
3 vtxdlfgrval.a A = dom I
4 vtxdlfgrval.d D = VtxDeg G
5 1 2 umgrislfupgr G UMGraph G UPGraph I : dom I x 𝒫 V | 2 x
6 3 eqcomi dom I = A
7 6 feq2i I : dom I x 𝒫 V | 2 x I : A x 𝒫 V | 2 x
8 7 biimpi I : dom I x 𝒫 V | 2 x I : A x 𝒫 V | 2 x
9 5 8 simplbiim G UMGraph I : A x 𝒫 V | 2 x
10 1 2 3 4 vtxdlfgrval I : A x 𝒫 V | 2 x U V D U = x A | U I x
11 9 10 sylan G UMGraph U V D U = x A | U I x